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Optimal Rule-based Granular
Systems from Data Streams

Daniel Leite, Goran Andonovski, Igor Škrjanc, Fernando Gomide

Abstract—We introduce an incremental learning method for
the optimal construction of rule-based granular systems from
numerical data streams. The method is developed within a
multiobjective optimization framework considering the specificity
of information, model compactness, and variability and granular
coverage of the data. We use α-level sets over Gaussian member-
ship functions to set model granularity and operate with hyper-
rectangular forms of granules in nonstationary environments.
The resulting rule-based systems are formed in a formal and
systematic fashion. They can be useful in time series modeling,
dynamic system identification, predictive analytics, and adaptive
control. Precise estimates and enclosures are given by linear
piecewise and inclusion functions related to optimal granular
mappings.

Index Terms—Evolving Systems, Granular Computing, Infor-
mation Specificity, Online Data Stream, Adaptive Systems.

I. INTRODUCTION

Since the last decade, real-time model adaptation and data
stream processing have become key research issues motivated
by two broad reasons. First, a proliferation of automated sys-
tems, small scale computing devices, sensor networks, social
media, and data capture and communication technologies have
produced large volumes of data. Currently, the amount of
data is increasing at a rate that sometimes outpaces available
storage capacity. Often, data are stored only, without an
intended purpose in mind. Second, there has been a keen
aspiration toward a more human-like, evolving intelligence on
chips, softwares, and systems. Broadly stated, the focus of data
analysis has shifted from offline batch processing of data to
the incremental handling of online data streams [1] [2].

Granular computing methods have been developed to un-
cover meaningful knowledge from large data sets. These meth-
ods examine the information flow in dynamic environments,
and produce and keep updated a granular model that can be
linguistically understood and be used in pattern classification
[3] [4] [5], prediction [6] [7] [8], localization [9], and model-
based control [10] [11] [12]. The general idea of granular
computing can be traced to Tsau Young Lin and Lotfi Zadeh
[13]. The concepts of granules and granular mapping are used
in the process of learning from data streams. Granules denote
clumps of objects, subsets or elements of a domain drawn
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together by similarity, proximity or functionality [16] [14]
[15]. Granular mappings are defined over granules and maps
them into a collection of granules expressed in some output
space. Granular mappings are very often found in rule-based
systems, where the mapping is given by If-Then statements
[16] [17].

The concept of granule is highly correlated to the concept of
information specificity [18]. An increase in the specificity of
information tends to increase its usefulness to assist decisions
and actions. On one hand, being very specific we risk being
both incorrect – since experimental evidence may not be em-
braced by the information – and flooded by too many details.
On the other hand, being very little specific, we can assure that
the true values are included. However, we may end up with
coarse information and an unhelpful model. In information
theory this is called specificity-correctness tradeoff [19]. The
granularity [20] of granular models should be legitimized by,
and reflect the available data to the highest extent in the sense
that granules should maximize data coverage by paving the
data space. At the same time, granules should be specific for
a more meaningful description.

Granular models built from detailed data streams can be
supported by many computational frameworks such as interval
mathematics, fuzzy sets, rough sets, shadow sets, cluster
analysis, decision trees, neighborhood systems. On top of these
are generalized constraints in the sense of Zadeh’s general
theory of uncertainty [21], which are used to delimit and
represent granules within the different frameworks. Computing
with granules permit choices of representative objects and
handling tools. Regardless of the framework, online granu-
lation aims to retain the essence of stream data as granular
objects. While direct application of machine-learning methods
to nonstationary data streams is very often infeasible since (i)
it is difficult (or impossible) to maintain all the data in memory
for multiple training iterations; and (ii) typical nonstationaries
usually require a complete offline-redesign of models, the
ultimate goal of computing with evolving granules in online
environment is to gradually develop more abstract, human-
centric representations of the data.

Evolving intelligent systems is a mainstream of research in
online data modeling [22] [23] [24] [25]. Here we use the term
evolving in the sense of gradual development of granules, rule
base, and associated parameters. With real-time parametric and
structural adaptation, the burden of redesigning models from
scratch from time to time is avoided in evolving modeling. A
variety of heuristic methods have been proposed over the last
ten years to guide the development, and incremental adaptation
of rule-based models from nonstationary numerical [4] [11]
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[26] [27] [28] and granular [6] [7] [12] [29] data streams. Ap-
plications in many distinct domains, such as sensor networks,
real-time finance, weather and energy forecasting, control of
unmanned vehicles and finger dynamics, chaotic systems, and
anomaly detection, have been reported [22] [30] [31] [32] [51].
Interesting and persuasive practical solutions to immediate
goals have been achieved. Nonetheless, propositions, lemmas,
theorems, and assurance that certain conditions will be fulfilled
are still scarce in the field of evolving clustering, evolving
neuro-fuzzy, and rule-based modeling from data streams.

The problem we address in this paper is concerned with
the optimal construction of rule-based granular models from
numerical data streams. The evolving optimal granular system
(eOGS) uses piecewise affine and inclusion functions associ-
ated with Gaussian and hyper-rectangular forms of granules
to give granular and numerical estimates of nonstationary
functions. Approximand functions can be time-series models,
decision boundaries between classes, control or regression
functions in general. eOGS self-adapts its granular structure
whenever a new concept emerges, or a drift occurs in the data
stream. Adaptation is done by trading-off several conflicting
objectives. The approach to choose the model granularity
accounts for the variability of the data, level sets, error
estimations, and the specificity-correctness tradeoff. Multiple
granularities are obtained along the construction of the model.
They are justified by the diversity of information occurring
in the data. Granulation facilitates incremental updating and
maintenance of a statistical summary of the data belonging to
a granule with minor storage and processing overhead.

The remainder of this paper is structured as follows. Sec-
tion II gives the mathematical background needed to support
the evolving granular framework and learning algorithm. A
specificity measure for Gaussian granules is given, and the
ε-contraint formulation of the multiobjective design scheme
is presented. Section III develops the eOGS algorithm to
generate granular structures and mappings from data streams.
Section IV addresses an interactive setting of eOGS to achieve
particular solutions, and an automatic, fully autonomous eOGS
approach. Section V presents application examples, and Sec-
tion VI concludes the paper and suggests issues for further
development.

II. CONTEXTUALIZATION AND BACKGROUND

The fundamental ideas and principles behind evolving op-
timal granular systems are summarized in this section.

A. Justifiable granularity

The realization of information granules from datasets has
been discussed [20] [33] [34] [35] [36]. In particular, the
principle of justifiable granularity [20] stands for a broad con-
cept to guide the formation of meaningful granules based on
experimental evidence, i.e. numerical or detailed granular data.
In other words, the more data are included within the bounds
of a granule, the better. Data coverage is a desired feature.
We want granules to enclose all, or at least most, of the data.
However, granules should be as specific as possible to come
with an related semantic, and to be more supportive of further

decisions or actions. If many data are included in a granule,
the granule may become too wide. By contrary, if the granule
is too narrow, few data will be covered. The requirements
of experimental evidence and specificity are conflicting. In
this paper we resort on a multiobjective optimization based
formulation using α-level sets and Pareto fronts to achieve a
trade-off between these requirements.

A rule-based model is formed in a formal fashion. First,
the essence of the information carried by the data stream
is captured by means of recursive equations, fuzzy sets and
local functions. We use α-cuts and cylindrical extensions of
α-level sets over the Cartesian product space to form hyper-
rectangles – a pavement for the data. Given the requirements
for the resulting granular construction and for its estimates, a
systematic and optimal way of forming granules and granular
mappings is developed. We may find a feasible value for α
and for other adaptive parameters in such a way that: (i) a
maximum number of rules and a minimum specificity for the
granules are respected; (ii) numerical or granular estimation
errors are treated as priority; or (iii) multiple requirements
are balanced. In any scenario, optimally placed granules and
optimal inclusion and local functions are obtained.

B. Interval information granules

Constructing models from data streams requires incremental
learning to keep an updated summary of the data. Learning
should be one-pass, and neglect all previously seen data
samples: each data sample should be processed only once
and removed from memory. We particularly want to capture
spatial and temporal variability of numerical data x[h] =
(x1, ..., xj , ..., xn)[h], h = 1, ..., using a set of granules
γ = {γ1, ..., γc}. A local γi (a n-dimensional hyperbox) is
chosen to fit a sample x[h], that is, to include the information
conveyed by x[h]. Otherwise, if x[h] is not sufficiently related
to any γi, then a new granule γc+1 can be created – expanding
the current collection γ. Therefore, γ is a granular model that
describes the data stream x[h], h = 1, ...

Granules of interval nature depend essentially on the lower
lij and upper Lij endpoints of axis-aligned hyper-rectangles.
Endpoints are determined by spanning α-level subsets of
individual features, α ∈ (0, 1]. Assume for simplicity a
Gaussian membership function Πi

j = G(µij , σ
i
j), as illustrated

in Fig. 1, which conveys the representation of the j-th feature
of the i-th granule. Gaussians can be easily captured and
incrementally adapted from the data stream x[h], h = 1, .... We
are interested in the range of values that data samples rest on
most occasions. Parameter α cuts Πi

j at each tail and produces
an interval [lij , L

i
j ] whose extension over the Cartesian product

space X1 × ...×Xj × ...×Xn assembles an interval-valued
granule. Interval granules cover the data, and fuzzy Gaussians
maintain the essence of the information.

Depending on the tightness of Πi
j and on α, granules and

rule-based models may achieve any desired specificity. For
example, if a learning algorithm is used to recursively adapt
µij and σij , then Πi

j may enlarge, shrink and drift over time
to track nonstationarities in data streams. At the same time,
we can use α to manage the size of intervals [lij , L

i
j ], i.e., to
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Fig. 1: α-level [lij , L
i
j ] of the membership function Πi

j

control the specificity of local interval granules. Notice that if
α is set to 1, then the corresponding hyperbox degenerates to a
point. In opposition, if α approaches 0, then a single hyperbox
covers the entire data space.

C. Specificity measure

Specificity refers to the amount of information conveyed by
a fuzzy set [19].

A measure of specificity of Π ⊆ X , denoted Sp(Π), assigns
to Π a value such that 0 ≤ Sp(Π) ≤ 1 and

Sp(Π) = 1, if Π ≡ {x}; (singleton)

Sp(Π) = 0, if Π = ∅;
Sp(Π1) ≤ Sp(Π2), if Π1 ⊇ Π2.

Sp(Π) measures the specificity of a set in the sense that it
indicates the degree to which Π directs to one and only one
element as its evidence.

Suppose Π is a subset of X . Yager [19] defines a general
class of specificity measure over continuous domains as

Sp(Π) =

∫ αmax

0

F (λ(Πα))dα, (1)

where Πα = {x : Π(x) ≥ α} is the α-level of Π; αmax is the
height of Π; λ is a monotonic measure; and F : [0, 1]→ [0, 1]
is a function such that F (0) = 1; F (1) = 0; and 0 ≤ F (x1) ≤
F (x2), for x1 > x2.

Let Π be a Gaussian membership function in X with modal
value µ and dispersion σ,

Π = e−(x−µ)2/2σ2

. (2)

Gaussians are normal (height equal to 1), and have infi-
nite support. Level sets of Gaussian membership functions
are intervals Πα whose centers and radii are of the form
µ±

√
−2σ2ln(α).

If

M ,
√
−2σ2ln (α), (3)

then

Πα = [µ−M,µ+M ]. (4)

Using the Lebesgue-Stieltjes measure [37] for λ in a totally
bounded domain X = [c, d] we have

λ(Πα) =
wdt(Πα)

wdt(X)
=
µ+M − (µ−M)

d− c
=

2M

d− c
,

where wdt(.) means the interval width which is equal to the
absolute difference between the endpoints of the interval [38].
If all x ∈ [0, 1], then [c, d] = [0, 1]. Assuming F (z) = 1 − z
we get

F (λ(Πα)) = 1− 2M

d− c
.

Using the Yager definition of specificity (1) and the α-level
set Πα we have

Sp(Πα) =

∫ 1

0

F (λ(Πα))dα

= 1−
∫ 1

0

λ(Πα)dα

= 1− 2

d− c

∫ 1

0

Mdα.

Notice that the term 2
∫ 1

0
Mdα is the area under Πα, and

because the width of Πα is 2M we have that
∫ 1

0
wdt(Πα)dα =

wdt(Πα). Therefore,

Sp(Πα) = 1− wdt(Πα)

d− c
= 1−

(
L− l
d− c

)
,

where l = µ−M , and L = µ+M are the endpoints of (4).
In terms of the dispersion σ and α,

Sp(Πα) = 1−
2
√

2σ
√
−ln(α)

d− c
. (5)

Let Πi = {Πi
1, ...,Π

i
j , ...,Π

i
n} be a set of Gaussian functions

such that Πi
j has domain Xj , and let Xn = X1 × ...×Xj ×

...×Xn. Through α-cuts we may assemble an interval granule
γi in Xn. We define the specificity of a n-dimensional granule
γi as the average of the specificity measure of each of its n
components, namely,

Spa(γi) = 1− 2
√

2

n

n∑
j=1

σij
√
−ln (α)

dj − cj
. (6)
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D. A compromising decision strategy

Data-stream-driven learning methods to build granular mod-
els should ideally adapt key decision parameters to provide the
requested outcomes in an optimal sense and satisfy constraints.
For example, parameter α ∈ (0, 1], which gives level sets
in eOGS is a free quantity representing a decision to be
made. The decision maker may either interactively set α
– and other key parameters – to force a specific model
structure and behavior, or use automatic procedures for the
purpose of optimizing an objective function within the feasible
region formed by constraints. While evolving methods should
capture information from the data stream, and represent the
current environment as accurately and stably as possible, the
parameters and structure of models should remain flexible to
deal with changes (stability-plasticity dilemma [39]). Let P
represent all key eOGS parameters to be set. The remaining
parameters will be presented formally in the description of the
learning algorithm in the next section.

Possible criteria that might be used to guide the adaptation
of the parameters P include the numerical estimation error
(En), granular estimation error (Eg), specificity of the granular
mapping (Spa(γ)), and total number of rules (c). Generally,
we want to reduce the numerical and granular errors, increase
the specificity/meaningfulness of the granules, and maintain
a compact rule-base structure. Clear tradeoffs emerge, e.g., a
smaller number of rules tends to produce less specific granular
mappings, and may generate better or worse estimations
depending on the data stream.

A multiobjective function to be minimized is given as

F (P) = min [f1(P), f2(P), f3(P), f4(P)]

s.t. P ∈ Ω (7)

where Ω is the parameter space and

En , f1(P),

Eg , f2(P),

−Spa(γ) = −
c∑
i=1

Spa(γi) , f3(P),

c , f4(P).

The objectives of (7) compete so that the solution is not
unique. Improvement in one objective may degrade the others
but maintain Pareto optimality. Experts can express preference
for a solution along a tradeoff surface. We provide two
approaches to deal with this issue in the next sections. The
first is an interactive approach to choose P and produce a set
of solutions, which is suggested to the decision maker. The
second is an automatic, fully autonomous approach to choose
P in a balanced way.

In the ε-constraint method [40], a priority objective is
chosen to be optimized while the other objectives are converted
into constraints by setting an upper bound to each of them.
The problem (7) takes the form

F (P) = min fs(P)

s.t. ft(P) ≤ εt, ∀t, t 6= s

P ∈ Ω. (8)

The following theorems show that Pareto optimal solutions of
(7) can be obtained by solving (8) for distinct choices of εt
[41] [42].

Theorem 1. The solution of (8) is weakly Pareto optimal.
Proof. [41] Let P∗ ∈ Ω be a solution of (8). Assume P∗
is not weakly Pareto optimal. Then, there exists some other
P ∈ Ω such that fr(P) < fr(P∗)∀r. This means that ft(P) <
ft(P∗) ≤ εt ∀t, t 6= s. Thus P is feasible and fs(P) < fs(P∗).
Being so, P∗ is a contradictory solution. Therefore, P∗ needs
to be weakly Pareto optimal. Q.E.D.

Moreover,

Theorem 2. A decision P∗ ∈ Ω is Pareto optimal if it is a
solution of (8) for any s and εt = ft(P∗).
Proof. [41] Let P∗ ∈ Ω be Pareto optimal. Assume P∗ does
not solve (8) for some s where εt = ft(P∗). Then there
exists a P ∈ Ω so that fs(P) < fs(P∗) and ft(P) ≤ ft(P∗),
which contradicts the Pareto optimality of P∗. Therefore,
P∗ necessarily solve (8) for any chosen s. Since P∗ is by
assumption solution of (8) for every s there is no P such that
fs(P) < fs(P∗). Q.E.D.

The ε-constraint method provides Pareto optimal solutions
within eOGS if the objective functions are convex. Otherwise,
as convexity is never guaranteed in nonlinear nonstationary
context, the method provides local noninferior solutions [40]
[42].

Consider a parameter variation function

v(ψ) = infP∈Ω{fs(P + ψs) | ft(P + ψt) ≤ εt ∀t} (9)

associated with (8) [41]. Converting (9) into an unconstrained
problem by using a Lagrange function we have

min fs(P + ψs) +
∑
∀t,t6=s

λt(ft(P + ψt)− εt), (10)

where λt∀t are Lagrange multipliers. The Karush-Kuhn-
Tucker necessary condition for P∗ to be a solution of the
ε-constraint problem says that there exists λt ≥ 0 such that

∇fs(P∗) +
∑
∀t,t6=s

λt∇(ft(P∗)− εt) = 0,

λt(ft(P∗)− εt) = 0, ∀t 6= s.

If the constraint concerning ft is not active, the corresponding
multiplier λt is equal to 0 [43].

A systematic and fully autonomous heuristic procedure to
change the decision parameters P of eOGS models is given
in Section IV. In this case, the heuristic procedure is the
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decision maker, and no human is involved in the process of
finding a solution to (7) from (8). In practice, users can also
systematically select values for P manually, and observe if the
price that should be paid by the secondary objectives for an
improvement of the priority objective, fs, is acceptable. In this
case, the user is the decision maker.

To sum up, once a priority objective, and the bounds for
the remaining objectives are chosen, eOGS aims at generating
local noninferior solutions in terms of numerical and gran-
ular estimation errors, structural compactness, and granular
specificity. The eOGS is a heuristic procedure that continuosly
attempts to solve (8) at each processing step. Approaches for
the eOGS heuristics may either involve user preferences in an
interactive mode, or be fully autonomous. In both cases, the
solutions developed during the processing steps are approxi-
mations of the Pareto optimal solutions only. This is because
the systems we are concerned with here are nonstationary, and
eventually subject to functional changes as well. Details of the
eOGS are given in the next section. Section IV summarizes
the interactive design, and the fully autonomous operation
approaches of the eOGS.

III. EVOLVING OPTIMAL GRANULAR MODELS

Granular evolving models provide numerical and granular
estimations of nonlinear and nonstationary functions from
data streams [29] [44]. An online learning algorithm builds
the model structure and adapts parameters whenever new
behaviors are found in the data. eOGS detects concept drift
and shift and copes with uncertainty.

The basic working principle is to enclose similar data
samples into granules upon which computations are conducted
more easily. eOGS models are linguistically interpretable. A
granular mapping from a space X to a space Y is a rule which
assigns to each granule of X a granule in Y . eOGS models
encode granular mappings into If-Then rules. A collection
of rules, namely the rule base, is a granular mapping that
gives a granular and a numerical output. The granular output
is created by an inclusion function P or by the bounds of
granules developed in the output space. The numerical output
is given by a local algebraic function p associated with each
rule. In the following sections, we address the eOGS rule-base
structure and learning methodology.

A. From hyper-rectangles to explicit rules

An eOGS granular hyper-rectangle γi is defined by span-
ning α-level sets of membership functions Πi

j = G(µij , σ
i
j),

j = 1, ..., n, in the space X1 × ... × Xn. Granule γi can be
explicitly described by the rule

Ri: IF (li1 ≤ x1 ≤ Li1) AND ... AND (lin ≤ xn ≤ Lin)
THEN (ui1 ≤ y1 ≤ U i1) AND ȳi1 = pi1(x1, ..., xn) AND

...
(uim ≤ ym ≤ U im) AND ȳim = pim(x1, ..., xn),

where lij and Lij , j = 1, ..., n; i = 1, ..., c, are the j-th lower
and upper bounds of the feature xj according to the i-th rule;

uik and U ik, k = 1, ...,m, are the k-th lower and upper bounds
of the output yk; and pik are numerical affine functions,

ȳik = pik(x1, ..., xn) = ai0k +
n∑
j=1

aijkxj . (11)

In general, each pik can be of different type and do not need to
be linear. The hyper-rectangle γi conveys Gaussian member-
ship functions Πi

j = G(µij , σ
i
j), j = 1, ..., n, as internal repre-

sentation – an additional information that summarizes past data
samples belonging to γi. The modal values µij and dispersions
σij are captured recursively from the data stream. Moreover,
the Recursive Least Squares (RLS) algorithm [12] is used to
determine the coefficients ajk, j = 0, ..., n, k = 1, ...,m, of
the functions pik whenever the i-th rule is active for an input
sample x = (x1, ..., xn).

B. Stiegler and Minimal approaches to create granules

Granules and rules are created either if the current input
sample x[h] is not in [lij , L

i
j ] ∀i and some j; or y[h] /∈

[uik, U
i
k] ∀i and some k. Notice that the bounds of the

underlying intervals depend on the value of α that cuts Πi
j

and Πi
k. If α → 0+, then [lij , L

i
j ]∀j and [uik, U

i
k]∀k cover

the whole input and output spaces, i.e., they form unit n-
and m-dimensional hyperboxes, respectively. Contrariwise, if
α→ 1−, then the granule γi degenerates in a single point.

An approach to initialize the parameters of a new granule is
to consider the Stigler’s standard Gaussian function [45]. The
new granule γc+1 has modal value

µc+1
j,k = (xj , yk)[h] ∀j, k, (12)

and dispersion

(σc+1
j,k )2 = 1/2π ∀j, k. (13)

A hyper-rectangle centralized in (x, y)[h] is obtained as the
Cartesian product of unidimensional α-cuts.

Based on (3) and (4), granule bounds are given as

[lc+1
j , Lc+1

j ] = x
[h]
j ±

√
−2(σc+1

j )2ln (α) (14)

and

[uc+1
k , U c+1

k ] = y
[h]
k ±

√
−2(σc+1

k )2ln (α), (15)

0 < α < 1. Polynomial coefficients are set as

ac+1
0k = y

[h]
k , ∀k; and ac+1

jk = 0, ∀k, j = 1, ..., n. (16)

Initial granule specificity is obtained from (6).
The Stiegler (maximal) initialization approach may require

some iterations for the new granule to shrink and be sized
similarly to the other granules. During this period, all new
samples within the bounds of the new granule should be used
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to adapt its modal value, dispersion and consequent coeffi-
cients. Notice that, the RLS algorithm to adapt consequent
coefficients requires at least n+1 linearly independent samples
falling within a granule to achieve consistent values for n+ 1
coefficients. If desired, insufficiently mature granules can be
considered apart from the others and temporarily ignored as a
contributor to the global estimation. Particularly, this may be
an approach to detect outliers as, after a number of iterations,
a granule prompted by an outlier will not achieve maturity.
Outlier detection is not on the scope of this paper.

An alternative to the Stiegler approach is to initialize the
dispersion of the new granule γc+1 using a small (minimal)
value for (σc+1

j,k )2. A default value is suggested as

(σc+1
j,k )2 = 10−2 ∀j, k. (17)

In the Minimal approach, a new granule tends to expand over
time and develops itself driven by samples resting within its
bounds or relatively closer to its center compared to the centers
of other granules. Overlapping of granules is reduced; more
specific granular mappings are stimulated; and the evolution
process and eOGS overall estimates tend to be smoother.

C. Adaptation over time

Real-world data streams change over time. Adapting eOGS
rules consists in enlarging or contracting the bounds of gran-
ules and simultaneously changing the coefficients of local
functions to better fit new behaviors.

Consider samples within a time window, (x, y)[h−ν],
(x, y)[h−ν+1], ..., (x, y)[h]; ν is the length of the window,
h is the time step. If a new x[h] fits [lij , L

i
j ] ∀j and y[h]

fits [uik, U
i
k] ∀k and some i, then the parameters of the local

Gaussians Πi are updated recursively using

µij,k(new) =
νiµij,k(old) + (xj , yk)[h]

νi + 1
,∀j, k (18)

and

(
σij,k(new)

)2
=βi

(
σij,k(old)

)2
,∀j, k, (19)

where

βi ,
νi(µij,k − (lj , uk)) + Ψ(|µij,k − (xj , yk)[h]|)

(νi + 1)(µij,k − (lj , uk))
,

νi is the number of samples belonging to γi out of the past
ν samples; Ψ = 2 is a default value. Superior or inferior
values for the parameter Ψ compel expansion or contraction
of Gaussians over the iterations, and less or more specific
granular mappings.

Combining (4), (18) and (19), the α-level set of the updated
granule, γi, is found as

[(lij , u
i
k), (Lij , U

i
k)] = µij,k(new)±

√
−2 ln (α)

(
σij,k(new)

)2

(20)

∀j, k. Moreover the specificity of the underlying granule,
Spa(γi), is calculated as in (6).

Given a priority objective fs (numerical or granular estima-
tion error, specificity of the granular mapping or total number
of rules), the ε-constraint method (8) finds α and Ψ to satisfy
the constraints ft and minimize fs. The values of α and Ψ
are used in (19) and (20) to update the dispersions Πi

j and Πi
k

and determine the bounds [lij , L
i
j ] and [uik, U

i
k]. Users manifest

their preferences by choosing the main objective and setting
admissible values for the constraints εt∀t.

Notice that the adaptation procedures described are recur-
sive, i.e., values are accumulated. Therefore, a sample (x, y)[h]

can be discarded after being processed. The RLS algorithm
[12] adapts the coefficients aijk ∀j, k, for samples that activate
γi. Notice also that the size of the time window, ν, means
the lifetime of information within the short-term memory
of eOGS models. Models consider the last ν samples only
to keep evolution active. If model convergence is expected,
then ν = ∞ provides more static and solid granules after a
number of iterations. In this case, the model is still flexible to
changes since new granules and rules may be created for new
situations.

D. Merging granules

Merging neighbor granules, say γi1 and γi2 , is helpful to
reduce the number of rules and eliminate partially overlapping
granules conveying similar information. A variety of decision
criteria and heuristic ways of merging granules can be en-
visioned. The approach we adopted takes the 2-norm of the
difference between midpoints of all pairs of granules, i.e.,

arg min
i1,i2=1,...,c; i1 6=i2

||µi1 − µi2 ||
n

, (21)

where n is the number of features, or dimensions of µ. Given
the closest granules, γi1 and γi2 , if

||µi1 − µi2 ||
n

≤ ω, (22)

being ω a constant or time varying threshold, then the granules
are merged. Manual and automatic adaptation approaches for
ω according to an objective and constraints will be described
in the Methodology section.

The resulting granule, say γc+1, is formed by n + m
Gaussian membership functions (n inputs and m outputs)
whose modal values depend on the amount of data samples
each of the merged granules used to represent. Formally,

µc+1
j,k =

νi1µi1j,k + νi2µi2j,k
νi1 + νi2

, ∀j, k. (23)

If the Gaussians are extended to the n-dimensional space, the
midpoint of the new granule is in a straight line that connects
the midpoints of the previous granules.

The maximum dispersion approach takes

σc+1
j,k = max(σi1j,k, σ

i2
j,k), ∀j, k, (24)
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as the dispersions of the new granule γc+1. The idea is to
preserve information of a variety of samples in the merging
region. Given (23) and (24), granule bounds and specificity
can be obtained from (20) and (6), respectively, by analogy.
Polynomial coefficients are set as

ac+1
jk =

ai1jk + ai2jk
2

, ∀j, k. (25)

E. Deleting granules

Inactive rules for a number of iterations can be deleted. This
may mean that the underlying system changed and removing
granules is practical to keep the rule base size as compact as
possible.

Remember νi, the amount of samples that activated γi out
of the newest ν samples, x[h−ν], ..., x[h]. For inactive granules,
νi = 0, and the respective granule and rule can be removed.
Applications in which rare events are more important than
the usual ones, e.g., in anomaly detection, or when cyclical
drifts are expected, deletion of inactive granules may be
inappropriate, and therefore ignored.

F. Interval approximation function

The image of a granule γi through a multivariable real
function pik is defined as:

pik([li1, L
i
1], ..., [lin, L

i
n]) =

= {pik(x1, ..., xn) : xj ∈ [lij , L
i
j ], j = 1, ..., n}.

Generally, the image of γi through pik is not a hyperrectangle
and it may be difficult to obtain in closed form. In practice,
pik can be approximated by an inclusion function P ik, which
is a hyperrectangle in the range of pik, namely [uik, U

i
k].

An interval function P ik is called inclusion function if pik ⊆
P ik∀i. Inclusion functions are not unique; they depend on how
we choose P [46].

An inclusion function P ik is optimal if it is the hull of
pik. In other words, the optimal inclusion function for pik is
the smallest hyperrectangle P i

∗

k that contains pik. Figure 2
illustrates the idea. P i

∗

k is unique. Its specificity is the highest
possible that guarantees inclusion.

Fig. 2: Image pik of granule γi and inclusion functions P ik and
P i

∗

k

Let pik be monotonically increasing in [lij , L
i
j ], j = 1, ..., n.

Then we can obtain pik from

pik(x) = [pik(li1, ..., l
i
n), pik(Li1, ..., L

i
n)].

Consequently, for any x ∈ γi, pik(x) ⊆ [pk(li), pk(Li)]. For
monotonic decreasing functions we have

pik(x) = [pik(Li1, ..., L
i
n), pik(li1, ..., l

i
n)].

An interval function pik is thin if it involves only degenerate
interval parameters or, equivalently, numerical parameters. For
instance, the interval function

pik(x ∈ γi) = ai0k +
n∑
j=1

aijk[lij , L
i
j ] (26)

is thin for (ai0k, ..., a
i
nk) degenerated intervals. When an in-

terval function has at least one interval parameter of nonzero
width, it is called thick [47]. We consider thin interval func-
tions only and the linear form (26). If the inclination aijk < 0,
then the bounds should be inverted, i.e. [Lij , l

i
j ].

G. eOGS learning algorithm

The eOGS learning algorithm is summarized as follows:

————————————————————————–
BEGIN
Set Interactive or Automatic (fully autonomous) mode;
Choose the output smoothness level f;
if (Interactive)

Set parameters P = {α,Ψ, ν, ω};
Set Stiegler or Minimal approach for the initial dispersions;

end
if (Automatic)

Choose a priority objective fs;
Choose admissible values for the remaining objectives εt∀t;

end
for h = 1, ...

Read input data x[h];
if h = 1

Create granule γ1 and rule R1 (Eqs. (12)-(17) and (6));
Provide singular ȳ[h] and granular [u1, U1][h] predictions;

else
Provide singular ȳ[h] and granular [ui, Ui][h] predictions;
// The actual output y[h] becomes available;
if x[h]

j /∈ [lij , L
i
j ] ∀i and some j

Create granule γc+1 and rule Rc+1 (Eqs. (12)-(17) and (6));
else

Adapt active granules γi (Eqs. (18)-(20) and (6));
end

end
Delete inactive granules and rules;
Merge granules and rules (Eqs. (21)-(25), (6), (20));
if (Automatic)

Adapt parameters P = {α,Ψ, ν, ω} to minimize fs respecting εt∀t;
end

end
END

————————————————————————–

IV. OPTIMAL DESIGN METHODOLOGY

We assume numerical and granular error measures to eval-
uate system accuracy. Additionally, a guideline on how to set
eOGS parameters interactively to achieve particular outcomes
is described. In this case, the user is the decision maker. The
user and the eOGS algorithm described in Section III are
involved in the process of finding a solution for (7) using
(8).
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A fully autonomous no-human-in-the-loop heuristic proce-
dure to adapt the key eOGS parameters is also outlined. In
this case, the heuristic procedure is the decision maker. Based
on (8), the eOGS algorithm together with either the interactive
or fully autonomous approach given in this section attempt to
solve (7) approximately since systems are nonstationary and
evolve continuously over time. Finally, a method to smooth
the predictions over time is delineated.

A. Numerical and granular error indices

The root mean square error of numerical predictions,

RMSE =
1

H

H∑
h=1

√√√√ 1

m

m∑
k=1

(y
[h]
k − ȳ

[h]
k )2, (27)

where H is the current number of iterations and m is the
number of output variables, is a measure of accuracy to
compare different models for a particular dataset [48].

An error measure for granular predictions that takes into
consideration inclusion of the actual values and the narrowness
of the enclosure is proposed. The mean granular error is

MGE =
1

kH

H∑
h=1

m∑
k=1

1− z
[h]
k (1− (U

[h]
k − u

[h]
k )), (28)

where

z
[h]
k =

{
1 if y[h]

k ∈ [uk, Uk][h]

0 otherwise.
(29)

If the actual output y[h]
k is out of the prediction bounds

[uk, Uk][h], then z
[h]
k = 0, giving the maximum MGE. The

MGE index is less than 1 only if the granular prediction
encloses y

[h]
k . The narrower is the bounds [uk, Uk][h] that

encloses y[h]
k , the smaller the MGE.

B. Interactive design

A guideline to set eOGS parameters P interactively is given
in this section. We assume default parameters as first attempt.
They are α = 0.1, Ψ = 2, ν = 500 and ω = 0.01. If
a prior set of samples is available, a data stream can be
simulated sometimes in a matter of seconds and, perhaps,
more appropriate parameters can be found from the default
values. Convenient boundary values are 0.01 ≤ α ≤ 1;
1.5 ≤ Ψ ≤ 2.5; ν ≥ n, i.e., greater than the number of
features; 0.01 ≤ ω ≤ 0.05.

Parameter α (the cut point of the Gaussians), and the initial
dispersions when granules are created are the most influential
eOGS parameters. The Minimal approach to initialize disper-
sions (σ2[0]

jk = 0.01 ∀j, k) is recommended if consecutive
samples of a stream are highly correlated in time, e.g., for
time series in which the inputs are lagged values of the
outputs; and continuous dynamical systems, in which sensor
measures tend to change smoothly over time. Otherwise, if
samples are not time indexed, but collected independently,

or for switched systems or systems subject to anomalies, the
Stiegler approach (σ2[0]

jk = 1/2π ∀j, k) should be employed.
In the former case, the dispersions will automatically expand
along the iterations, whereas in the latter case, dispersions will
shrink to an appropriate value.

After finding a proper value for α interactively (according
to a tradeoff among objectives or focusing on the best value of
a specific objective) using the small set of samples, parameters
ω, ν and Ψ can be chosen differently from the default values
as a way to fine tune the results.

Parameter ω is related to the minimum distance between
granules to allow their merging. Higher values of ω tend to
give a more compact rule base. Generally, the price is a higher
granular error and a smaller specificity of the granular map-
ping. Then, parameter ν, the inactivity threshold for deleting
granules, can be set to higher values if a greater memory
from the past is desired. Smaller values of ν are not recom-
mended. Often the numerical estimation error can improve
with a smaller ν, but this means that the most recent granules
are tracking the current environment quickly; however, rules
representing the past are being deleted. Parameter Ψ, used in
the adaptation of the Gaussians dispersions, can be reduced
or increased to force the Gaussians to shrink or expand faster
over the iterations. Values of Ψ different from the default one
may temporarily distort the true variance of the data within a
granule to accelerate the transient stage, and this may improve
marginally the average estimation errors.

C. Fully autonomous operation

A typical form of the optimization problem (8) takes the
numerical estimation error as primary objective, i.e.,

F (P) = min RMSE

s.t. MGE ≤ ε1

c ≤ ε2

Spa(γ) ≥ ε3 (30)

In general, the RMSE can be a constraint while MGE, c and
Spa(γ) may be chosen as primary objective. If any constraint
is violated, the algorithm should respond as soon as possible
by means of the parameters P = {α,Ψ, ν, ω}.

During the online operation of the eOGS algorithm if a
constraint is violated, parameters are changed as follows:
• If MGE is greater than ε1, then (i) α is stepped up; and

(ii) σ2 is stepped down for newly created granules, but
kept within the Minimal and Stiegler range of values, i.e.
0.01 ≤ σ2 ≤ 1/2π.

• If c is greater than ε2, then (i) α is stepped down; and (ii)
ω is stepped up. After some iterations, when c assumes
a feasible value, ω is reset to default.

• If Spa(γ) is less than ε3, then (i) α is stepped up; and (ii)
Ψ is stepped down. After some iterations, when Spa(γ)
assumes a feasible value, Ψ is reset to default.

Additionally,
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• If RMSE is greater than ε4, then (i) α is stepped down;
and (ii) σ2 is stepped up for newly created granules, but
kept within the Minimal and Stiegler range of values, i.e.
0.01 ≤ σ2 ≤ 1/2π.

If the values εt are set in an unrealistic way, parameters P reach
a limit and the best possible solution is given. Convenient
boundary values were described in the last section as 0.01 ≤
α ≤ 1; 1.5 ≤ Ψ ≤ 2.5; ν ≥ n, i.e., greater than the number
of features; 0.01 ≤ ω ≤ 0.05.

While the eOGS algorithm – Section III-G – attempts to
minimize the RMSE and MGE indices, and the number
of rules, c; and to maximize the specificity, Spa(γ), the
procedure described in this section monitors the constraints.
If a constraint is violated, then parameters P are updated to
reestablish the feasibility of the optimization problem.

D. Smoothing the predictions

In case the actual input and output data change smoothly
over time we may introduce smoothness on the eOGS predic-
tions. For example, (i) if the input data stream is available
from measures of a continuous dynamical system and the
sampling time is sufficiently small compared to the dominant
time constant of the system, then only gradual changes are
expected as model output; (ii) if differential or difference
equations are used to produce a data sequence by numerical
simulation, then smooth the predictions may be interesting;
(iii) if model inputs consist of lagged values of a univariate
time series, then smooth predictions are appealing; (iv) if
model outputs will be directly used in the real-world to feed
actuators, then smoothness may increase their lifetime.

By contrary, if data samples are available as a stream, but
are independent of each other, then smoothed predictions may
be detrimental. For example, (i) multivariate dynamical sys-
tems and time series with exogenous inputs should disregard
smoothness and accept predictions ȳ[h], h = 1, ..., as given
by the model; (ii) switched systems and time series in which
discontinuities are expected should ignore smoothness; (iii) in
anomaly detection applications, shifts are the most interesting
events and should not be smoothed.

Let f ∈ N+ be the smoothness level of the predictions. If
f = 1, then ȳ[h] is given as model numerical estimation. For
f > 1, the smoothed estimation results from

ȳ
[h]
smooth = y[h−1] +

ȳ[h] − y[h−f]

f
. (31)

Increasing f gradually reduces shifts or jumps on the model
estimations. Therefore, if the input samples from the underly-
ing application are time independent, then f should be set to
1 since model outputs should also be time independent. In the
latter case, jumps or shifts are desired.

Lower and upper prediction bounds (granular estimations)
are smoothed similarly, but using past predictions only. They
are obtained from

u
[h]
smooth = u[h−1] +

u[h] − u[h−f]

f
(32)

and

U
[h]
smooth = U [h−1] +

U [h] − U [h−f]

f
, (33)

respectively, for f > 1.

V. APPLICATION EXAMPLES

A. Mackey-Glass time series prediction

The Mackey-Glass equation,

dx

dt
=

ax[t−τ ]

1 + (x[t−τ ])c
− bx[t], a, b, c > 0, (34)

is a time delay differential equation that behaves chaotically
or periodically depending on the values of its parameters and
on the time delay τ . The equation may represent a feedback
control system. We assume that Eq. (34) is unknown. A time
series is produced by numerical integration using the fourth-
order Runge-Kutta method [49].

From the data we aim to construct a fuzzy granular model
f of the Mackey-Glass system to map previous values on a
future value, i.e., eOGS plays the role of f in

x[h+ξ] = f(x[h], x[h−∆], ..., x[h−D∆]). (35)

Similar to many studies on this series we choose ξ = 85,
∆ = 6, D = 3; and a = 0.2, b = 0.1, c = 10, τ = 17
for the parameters of the Mackey-Glass equation to generate
data samples. Samples are presented sequentially to the eOGS
algorithm, one at a time. The model is built from scratch, with
no rules nor pre-training. We resort to the sample-per-sample
testing-before-training approach from h = 105 to h = 11898.
In other words, at each iteration: (i) a prediction is given; (ii)
the actual output becomes available; and (iii) adaptation of
model parameters and structure are done if necessary – see
pseudocode in Section III.

1) Interactive Design: We start with the default parameters
α = 0.1, Ψ = 2, ν = 500, ω = 0.01 and the Minimal approach
to initialize dispersions.

As the data come from a continuous dynamical system,
it is expected that the values change smoothly over time.
Therefore, firstly, the smoothness constant f is increased. The
results obtained for different eOGS constructs considering the
numerical, RMSE, and granular, MGE, indices; number of
rules c; and specificity of the granular mapping Spa(γ) are
shown in Table I. The table also shows the total CPU time to
process 11793 data samples using a i7-8550U CPU dual-core
1.88-1.99GHz processor with 8GB of RAM.

From Table I we notice that both error indices become quite
low for f = 30, especially the RMSE. The error indices
saturate for higher values of f. This is the usual behavior for
univariate time series. Model structure and granule specificity
are naturally the same due to the smoothness introduced on
the numerical and granular predictions.

The interactive setting of the eOGS algorithm could be
considered terminated at this point. Nonetheless, the next step
is to change the α-level as an attempt to improve the MGE
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TABLE I: eOGS results for the Mackey-Glass time series:
increasing the smoothness of the predictions

f RMSE MGE c Spa(γ) Time(s)
1 0.0452 0.4579 11 0.7926 7.1
5 0.0082 0.3998 11 0.7926 7.1
10 0.0046 0.3834 11 0.7926 7.2
15 0.0037 0.3859 11 0.7926 7.3
20 0.0034 0.3638 11 0.7926 7.5
30 0.0032 0.3578 11 0.7926 7.8
40 0.0033 0.3667 11 0.7926 8.0
50 0.0033 0.3863 11 0.7926 8.2

index and the specificity of the granular mapping. Table II
shows the results for different α-level sets.

TABLE II: eOGS results for the Mackey-Glass time series:
increasing the α level

α RMSE MGE c Spa(γ) Time(s)
0.1 0.0032 0.3578 11 0.7926 7.8
0.2 0.0032 0.3714 13 0.7913 8.4
0.3 0.0032 0.3453 13 0.8023 8.4
0.4 0.0032 0.3080 13 0.8167 8.4
0.5 0.0032 0.3244 13 0.8185 8.5
0.6 0.0032 0.3215 13 0.8221 8.2
0.7 0.0032 0.3281 13 0.8259 8.5

Notice that α = 0.4 preserved the RMSE while provided
the minimal MGE and a slight improvement of the speci-
ficity Spa(γ) at the price of two additional rules, c = 13.
An almost exact fuzzy granular model of the Mackey-Glass
dynamical system and a narrow enclosure of the time series
were achieved. Adjustments can be considered concluded with
the choice of a model such as those produced using α = 0.1,
0.4 or 0.7. We choose α = 0.4.

The merging related parameter, ω, can be increased to
reduce the number of rules c and processing time. As merged
granules are less specific than its precursors, the price of a
more compact rule base is generally paid with a worse granular
estimation and granule specificity.

Remark 1. Reducing the length of the time window, ν, to
delete granules more often and obtain a more compact rule
base should be avoided as long and medium-term memory
may be lost. Larger time windows, ν, can be attempted for a
slightly superior RMSE and MGE.

Table III shows the eOGS results for different values of ω.

TABLE III: eOGS results for the Mackey-Glass time series:
increasing ω for a more compact rule base

ω RMSE MGE c Spa(γ) Time(s)
0.01 0.0032 0.3080 13 0.8167 8.4
0.02 0.0032 0.3488 10 0.8006 7.5
0.03 0.0032 0.3523 9 0.7783 6.7

In Table III, the RMSE is maintained with the increase of
ω. Naturally, as a smaller number of rules for higher values
of ω are being used, the maintenance of such error index
is only possible because the granules are focused on recent
occurrences and being slide to track the time series. Therefore,
eOGS memory of past information is kept in the model, but
in a more abstract way, which may or may not be interesting.

We opt for the model with the smaller MGE and 13 rules as
solution. Such model is obtained using the default parameters,
except for f = 30 and α = 0.4. The results are shown in the
first row of Table III.

2) Autonomous operation: Let the numerical prediction
error be the primary objective and consider constraints for the
remaining objectives. The optimization problem is given as

F (P) = min RMSE

s.t. MGE ≤ 0.35

c ≤ 10

Spa(γ) ≥ 0.8 (36)

Using the default parameters P initially, that is, α = 0.1,
Ψ = 2, ν = 500, ω = 0.01, and Minimal initial dispersions,
the autonomous eOGS algorithm searches for appropriate
parameters P to satisfy the constraints and minimize the
RMSE over the iterations. Figure 3 shows the numerical and
granular predictions and the evolution of the number of rules,
specificity, error indices and α level.

Fig. 3: Numerical and granular eOGS prediction, and evolution
of α, number of rules, specificity, and error indices
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From Fig. 3 we observe a quite low RMSE index, 0.0032,
and that the numerical prediction almost coincides with the
actual data. The granular enclosure (MGE = 0.3253) gives
a path for the time series and a range of possibilites that
may be useful to support decision making in different ways
depending on the purpose of the model. For example, in case
f represents the production of white blood cells to defend the
human body against pathogens as in Glass and Mackey [50],
eOGS granular prediction may represent the range of normal
activity of hematopoietic stem cells. Regarding the number of
rules (c = 10) and specificity (Spa(γ) = 0.8057), the online
incremental algorithm responded as soon as possible when
their values overcame the allowable values.

Lastly, in Table IV we compare the eOGS results shown
in Fig. 3 with the performance of other evolving models in
relation to the RMSE and number of local models c. The
effectiveness of the eOGS approach in predicting chaotic time
series without prior knowledge about the data is verified.
Different from other models, eOGS guarantees a level of
specificity of the granules and a level of compactness of the
rule base. In addition, it gives upper and lower boundaries; an
envelope of the actual values.

TABLE IV: Mackey-Glass time series: comparative results

Model Reference c RMSE
EFuNN [51] 193 0.0822

RAN [52] 113 0.0802
eTS [53] 9 0.0799
xTS [53] 10 0.0711

DENFIS [51] 58 0.0593
Neural Gas [54] 1000 0.0133

IBeM [55] 98 0.0126
FBeM [29] 33 0.0122
eOGS This paper 10 0.0032

B. Multivariate data stream

As an example of application in which samples are not cor-
related in time we choose the Concrete Compressive Strength
data set, available at the UCI Machine Learning Repository.
It consists of 1030 samples, 8 inputs and an output. Con-
crete ingredients and age of the mixture are the independent
variables of the compression function. Ingredients include
cement, blast furnace slag, fly ash, water, superplasticizer,
coarse and fine aggregate [56]. Compressive strength is the
capacity of a material to withstand axially-directed pushing
forces. Compressive tests measure how well concrete holds
up to the compressive pressures around it. When the limit of
compressive strength is reached, materials are crushed. When
building with concrete, it is important to know whether it can
bear the compressive forces [57].

Samples are disposed sequentially to the eOGS algorithm.
The model is built from an empty rule base. At each iteration:
(i) a prediction is given; (ii) the actual output becomes avail-
able; and (iii) adaptation of model parameters and structure
are done if necessary.

1) Interactive Design: Default parameters α = 0.1, Ψ = 2,
ν = 500, ω = 0.01 and the Stiegler approach to initialize
dispersions are employed. Smoothness on the predictions is

needless as the samples are uncorrelated, i.e., as the indepen-
dent data may be completely different in consecutive iterations,
jumps on the predictions are expected, therefore f = 1.

First, we change the α-level with focus on the minimal
numerical error. The results obtained for different eOGS
constructs considering the numerical, RMSE, and granular,
MGE, indices; number of rules c; and specificity of the
granular mapping Spa(γ) are shown in Table V. The total
CPU time to process 1030 samples considers a i7-8550U CPU
dual-core 1.88-1.99GHz processor with 8GB of RAM.

TABLE V: eOGS results for the Compressive Strength: chang-
ing the α level

α RMSE MGE c Spa(γ) Time(s)
0.9 0.1526 0.5346 79 0.5518 3.9
0.8 0.1426 0.5984 47 0.4820 2.7
0.7 0.1337 0.6545 39 0.4460 2.3
0.6 0.1295 0.7052 39 0.4290 2.1
0.5 0.1327 0.7247 30 0.3938 1.8
0.4 0.1334 0.7408 27 0.3767 1.7
0.3 0.1282 0.7576 21 0.3507 1.4
0.2 0.1220 0.7878 23 0.3345 1.4
0.1 0.1256 0.8063 20 0.3042 1.2
0.05 0.1242 0.8151 20 0.2941 1.2
0.01 0.1198 0.8386 17 0.2266 1.1

Notice that the numerical and granular outcomes are con-
flicting. We can accept an intermediate condition or search for
the best set of parameters with focus on the RMSE or MGE.
In case we opt for a smaller granular error, we can proceed
with α = 0.9 as higher values of α will produce a substantial
number of rules and granules c.

Next, using α = 0.01, we change ν and ω for fine tuning
the model. Reducing ν may cause some ‘somewhat’ inactive
rules to be deleted and a better RMSE, but the memory of the
resulting model becomes smaller. Increasing ω may also cause
excessive rule merging and therefore lost of model memory
capacity. Care should be taken to avoid a great reduction of
the number of rules c. We search for a proper ν and ω with
focus on the RMSE. Table VI shows the results.

TABLE VI: eOGS results for the Compressive Strength:
changing ν, ω and Ψ for a smaller numerical error

ω ↑ ν Ψ RMSE MGE c Spa(γ) Time(s)
0.01 500 2 0.1198 0.8386 17 0.2266 1.1
0.015 500 2 0.1180 0.8434 10 0.1907 0.8
0.02 500 2 0.1173 0.8815 6 0.1561 0.8
0.025 500 2 0.1157 0.9040 6 0.1350 0.8
0.03 500 2 0.1122 0.8945 4 0.0757 0.7
ω ν ↑ Ψ RMSE MGE c Spa(γ) Time(s)

0.025 600 2 0.1157 0.9162 7 0.1428 0.8
0.025 700 2 0.1158 0.9192 7 0.1436 0.9
0.025 800 2 0.1152 0.9194 7 0.1433 0.8
ω ν Ψ ↑ RMSE MGE c Spa(γ) Time(s)

0.025 800 2.1 0.1136 0.9003 6 0.1334 0.8
0.025 800 2.2 0.1113 0.8813 5 0.0881 0.8
0.025 800 2.3 0.1096 0.9035 6 0.0929 0.8
0.025 800 2.4 0.1095 0.9142 6 0.0764 0.8
0.025 800 2.5 0.1101 0.9262 5 0.0586 0.8

Notice that the parameters that produced the most accurate
eOGS model according to changes of ω (RMSE = 0.1122)
keeps only 4 rules in its rule base. Important rules repre-
senting past occurrences were merged. Frequently, we want
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the model to maintain information from the past. Therefore,
we proceeded with ω = 0.0025. Increasing ν to 800 yielded
the best RMSE. Next, increasing Ψ to enlarge the Gaussian
distributions generated an interesting 6-rule eOGS model with
RMSE = 0.1095, see the second last row of Table VI. This
model was chosen as solution of the interactive design.

2) Autonomous operation: Let the numerical error be the
primary objective and admit the remaining objectives as con-
straints. The optimization problem is

F (P) = min RMSE

s.t. MGE ≤ 0.7

c ≤ 15

Spa(γ) ≥ 0.4 (37)

Compared to the interactive design, we are now forcing the
granular error, MGE, and granular specificity, Spa(γ), to
more audacious values. MGE = 0.9142 and Spa(γ) =
0.0764 should now be less than 0.7 and more than 0.4,
respectively. A larger number of rules and a higher RMSE
are therefore expected for such problem formulation.

Figure 4 shows the numerical and granular approximation of
the concrete compressive strength function and the evolution
of the number of rules, specificity, error indices and α level.
The figure also shows the final Gaussians covering the output
space. The upper right plot expands the approximation of the
upper left plot in the range [935, 1030] for clarity.

The numerical and granular approximations give a value
of compressive strength and a range of values in its neighbor-
hood. Granular approximation may enhance model acceptabil-
ity and be made tighter if we accept a larger number of rules.
Different from the Mackey-Glass problem, the granular enclo-
sure of the compression function approaches the actual data
more carefully (MGE = 0.6894) due to lack of smoothness
and time correlation between consecutive samples. Although
the RMSE is 0.1310, notice that the instantaneous square
error reduces over time. This means that the model is achieving
maturity; the system is effectively learning on the fly, and the
accumulated RMSE index tends to become smaller if more
data samples are shown.

The evolution of the number of rules also demonstrates
a level of stability of the eOGS model structure, especially
after 420 iterations. If the algorithm creates rules beyond
the allowable value, parameters P are changed – see, e.g.,
the variation of the α-cut over time. The final number of
rules was c = 14. Similarly, the average granular mapping
specificity (Spa(γ) = 0.4217) is kept above the allowable
value. The final output Gaussians cover the output space as
illustrated. Highly overlapped output membership functions
are common as the merging procedure depends also on the
similarity of Gaussians in the universe of the input variables.
For example, two granules that are not significantly overlapped
in the input space can be mapped to close regions in the output
space. Their local linear functions may have similar slope or
not. The total CPU time to process 1030 samples was 0.96
seconds, which indicates that the algorithm can operate in real-
time considering high-frequency data streams. In general, as

a decision making support system, results may recommend
changing ingredients mix ratio or adding special hardeners to
the concrete compound.

Comparisons of eOGS with alternative evolving methods
are reported in Table VII. The results for eOGS are those
obtained in the interactive design with focus on the RMSE,
similar to the remaining algorithms. The fully autonomous
eOGS algorithm described in this section equilibrates multiple
numerical and granular objectives and is therefore dependent
on what one expects about the granular error and specificity.

TABLE VII: Concrete compressive strength prediction: com-
parative results

Model Reference c RMSE
DENFIS [51] 4 0.1240

IBeM [55] 4 0.1178
xTS [53] 17 0.1148

eGNN [7] 4 0.1133
eOGS This paper 6 0.1095
eTS [53] 21 0.1078

Table VII shows that eOGS is very competitive in this appli-
cation based on the relation numerical accuracy/compactness.
It reached a 0.1095 RMSE using an average of 6 rules.
eTS (evolving Takagi-Sugeno) has been the most accurate
method, but it requires a larger rule base and gives no
prediction boundaries and no guarantees on the specificity
of the local models. When using only 4 local models –
similar to DENFIS (Dynamic evolving neuro-fuzzy inference
system), IBeM (Interval-based evolving modeling) and eGNN
(evolving Granular Neural Network) – eOGS provided a
0.1122 RMSE, as shown in the fifth row of Table VI. This
result is also marginally superior to those of the other 4-
rule evolving models. Finally, we opt for the 6-rule eOGS
model aiming at a greater memory of past information. The
advantages of eOGS over the other approaches reside in its
granular enclosure provided as additional information to assist
decision making, the possibility of trading-off multiple objec-
tives, and a slightly superior accuracy/compactness relation in
the underlying multivariate data stream application.

VI. CONCLUSION

We described an online incremental learning method for
the optimal design of granular rule-based models from data
streams. We presented a multiobjective formulation to tradeoff
information specificity, model compactness, and numerical
and granular estimations. We provided assurance that certain
conditions can be expressed and fulfilled. Adaptive α-level
sets over Gaussian fuzzy membership functions was used to
set model granularity and operate with hyper-rectangular forms
of granules in nonstationary environment.

The resulting models are formed in a formal and systematic
fashion. In general, models can be applied to time series pre-
diction, nonlinear function approximation or dynamic systems
identification. Accurate estimates and enclosures are given by
linear piecewise and inclusion functions related to optimal
granular mappings. This was demonstrated empirically using
data from a chaotic nonlinear system, and from a multivariable
system whose samples are time independent. We also gave an
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Fig. 4: Numerical and granular eOGS prediction; evolution of α, number of rules, granular mapping specificity, and error
indices; and final output Gaussians for the Concrete Compressive Strength problem

interactive guideline and a fully-autonomous way to develop
granular systems.

The advantages of the evolving optimal granular approach
over any other evolving approach in the literature stands for
its granular enclosure, given as additional information to assist
decision making, and the possibility of trading-off multiple ob-
jectives. Particularly, the proposed method outperformed other
evolving methods in the sense of the accuracy/compactness
relation in the chaotic and multivariate problems studied.
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